
Infectious Disease Models 5 – **Basic Epidemiological Quantities** and Vaccination Nathaniel Osgood **CMPT 858** March 25, 2010

Shorthand for Key Quantities for Infectious Disease Models: Stocks

- *I* (or *Y*): Total number of infectives in population
 - This could be just one stock, or the sum of many stocks in the model (e.g. the sum of separate stocks for asymptomatic infectives and symptomatic infectives)
- N: Total size of population
 - This will typically be the sum of all the stocks of people
- S (or X): Number of susceptible individuals

- Intuition Behind Common Terms
 I/N: The Fraction of population members (or, by assumption, contacts!) that are infective
 - Important: Simplest models assume that this is also the fraction of a given susceptible's contacts that are infective! Many sophisticated models relax this assumption
- c(I/N): Number of *infectives* that come into contact with a susceptible in a given unit time
- c(I/N)β: "Force of infection": Likelihood a given susceptible will be infected per unit time
 - The idea is that if a given susceptible comes into contact with c(I/N) infectives per unit time, and if each such contact gives β likelihood of transmission of infection, then that susceptible has roughly a total likelihood of c(I/N) β of getting infected per unit time (e.g. month)

A Critical Throttle on Infection Spread: Fraction Susceptible (*f*)

- The fraction susceptible (here, S/N) is a key quantity limiting the spread of infection in a population
 - Recognizing its importance, we give this name f to the fraction of the population that issusceptible

Key Term: Flow Rate of New Infections

- This is the key form of the equation in many infectious disease models
- Total # of susceptibles infected per unit time # of Susceptibles * "Likelihood" a given susceptible will be infected per unit time = S*("Force of Infection") =S(c(I/N)β)
 - Note that this is a term that multiplies both S and I !
 - This is much different than the purely linear terms on which we have previously focused
 - "Likelihood" is actually a likelihood per unit time (e.g. can be >1 indicating that mean time to infection is <1)

Another Useful View of this Flow

- Recall: Total # of susceptibles infected per unit time = # of Susceptibles * "Likelihood" a given susceptible will be infected per unit time = S*("Force of Infection") = S(c(I/N)β)
- The above can also be phrased as the following:S(c(I/N)β)=I(c(S/N)β)=I(c*f*β)= # of Infectives * Mean # susceptibles infected per unit time by each infective
- This implies that as # of susceptibles falls=># of susceptibles surrounding each infective falls=>the rate of new infections falls ("Less fuel for the fire" leads to a smaller burning rate

Recall: The Importance of Susceptible Fraction

- Recall: Total # of susceptibles infected per unit time = # of Susceptibles * "Likelihood" a given susceptible will be infected per unit time = S*("Force of Infection") = S(c(I/N)β)
- The above can also be phrased as the following:S(c(I/N)β)=I(c(S/N)β)=# of Infectives * Average # susceptibles infected per unit time by each infective
- This implies that as Fraction of susceptibles falls=>Fraction of susceptibles surrounding each infective falls=>the rate of new infections falls ("Less fuel for the fire" leads to a smaller burning rate)

Slides Adapted from External Source Redacted from Public PDF for Copyright Reasons

Critical Notions

- Contact rates & transmission probabilities
- Equilibria
 - Endemic
 - Disease-free
- R₀, R_{*}
- Herd Immunity

Recall: Flow Rate of New Infections

- This is the key form of the equation in many infectious disease models
- Total # of susceptiblesinfected per unit time # of Susceptibles * "Likelihood" a given susceptible will be infected per unit time = S*("Force of Infection") =S(c(I/N)β)
 - Note that this is a term that multiplies both S and I !
 - This is much different than the purely linear terms on which we have previously focused
 - "Likelihood" is actually a likelihood density, i.e.
 "likelihood per unit time" (e.g. can be >1 indicating that mean time to infection is <1)

Recall: Another Useful View of this Flow

- Recall: Total # of susceptibles infected per unit time = # of Susceptibles * "Likelihood" a given susceptible will be infected per unit time = S*("Force of Infection") = S(c(I/N)β)
- The above can also be phrased as the following:S(c(I/N)β)=I(c(S/N)β)=# of Infectives * Average # susceptibles infected per unit time by each infective
- This implies that as # of susceptibles falls=># of susceptibles surrounding each infective falls=>the rate of new infections falls ("Less fuel for the fire" leads to a smaller burning rate

Infection

 Recall: For this model, a given infective infects c(S/N)β others per time unit

- This goes up as the number of susceptibles rises

- Questions
 - If the mean time a person is infective is μ , how many people does that infective infect before recovering?
 - With the same assumption, how many people would that infective infect if everyone else is susceptible?
 - Under what conditions would there be more infections after their recovery than before?

Fundamental Quantities

- We have just discovered the values of 2 famous epidemiological quantities for our model
 - Effective Reproductive Number: R*
 - Basic Reproductive Number: R₀

Effective Reproductive Number: R*

- Number of individuals infected by an 'index' infective in the current epidemological context
- Depends on
 - Contact number
 - Transmission probability
 - Length of time infected
 - # (Fraction) of Susceptibles
- Affects
 - Whether infection spreads
 - If R_{*}> 1, # of cases will rise, If R_{*}<1, # of cases will fall
 - Alternative formulation: Largest real eigenvalue <> 0
 - Endemic Rate

Basic Reproduction Number: R₀

- Number of individuals infected by an 'index' infective in an otherwise disease-free equilibrium
 - This is just R_{*} at disease-free equilibrium all (other) people in the population are susceptible other than the index infective
- Depends on
 - Contact number
 - Transmission probability
 - Length of time infected
- Affects
 - Whether infection spreads
 - If $R_0 > 1$, Epidemic Takes off, If $R_0 < 1$, Epidemic dies out
 - Alternative formulation: Largest real eigenvalue <> 0
 - Initial infection rise $\propto \exp(t^*(R0-1)/D)$
 - Endemic Rate

Basic Reproductive Number R₀

- If contact patterns & infection duration remain unchanged and if fraction f of the population is susceptible, then mean # of individuals infected by an infective over the course of their infection is f*R₀
- In endemic equilibrium: Inflow=Outflow \Rightarrow (S/N)·R₀=1
 - Every infective infects a "replacement" infective to keep equilibrium
 - Just enough of the population is susceptible to allow this replacement
 - The higher the R₀, the lower the fraction of susceptibles in equilibrium!
 - Generally some susceptibles remain: At some point in epidemic, susceptibles will get so low that can't spread

Our model

- Set
 - c=10 (people/month)
 - β =0.04 (4% chance of transmission per S-I contact)
 - μ=10
 - Birth and death rate= 0
 - Initial infectives=1, other 1000 susceptible
- What is R₀?
- What should we expect to see ?

Thresholds

- R*
 - Too low # susceptibles => R* < 1: # of infectives declining</p>
 - Too high # susceptibles => $R^* > 1$: # of infectives rising
- R₀
 - R₀>1: Infection is introduced from outside will cause outbreak
 - R₀<1: "Herd immunity": infection is introduced from outside will die out (may spread to small number before disappearing, but in unsustainable way)
 - This is what we try to achieve by control programs, vaccination, etc.
- Outflow from susceptibles (infections) is determined by the # of Infectives

Equilibrium Behaviour

- With Births & Deaths, the system can approach an "endemic equilibrium" where the infection stays circulating in the population – but in balance
- The balance is such that (simultaneously)
 - The rate of new infections = The rate of immigration
 - Otherwise # of susceptibles would be changing!
 - The rate of new infections = the rate of recovery
 - Otherwise # of infectives would be changing!

Equilibria

- Disease free
 - No infectives in population
 - Entire population is susceptible
- Endemic
 - Steady-state equilibrium produced by spread of illness
 - Assumption is often that children get exposed when young
- The stability of the these equilibria (whether the system departs from them when perturbed) depends on the parameter values
 - For the disease-free equilibrium on R_0

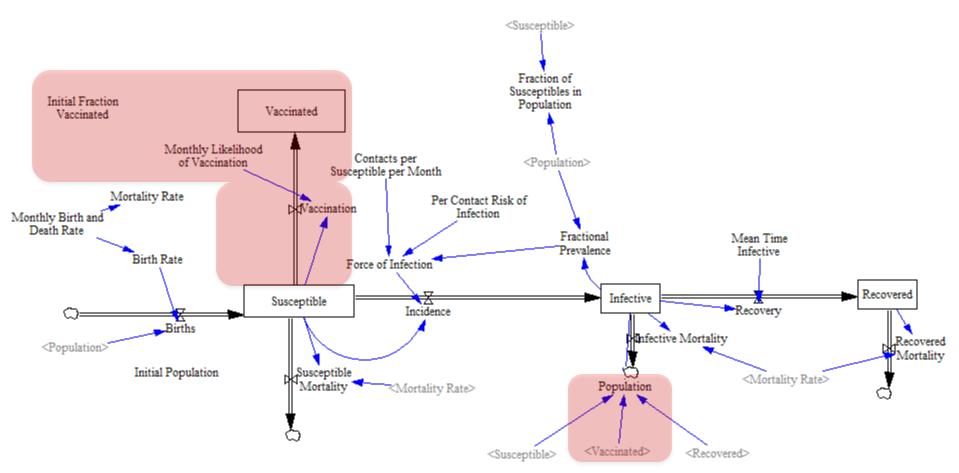
Vaccination

Equilibrium Behaviour

- With Births & Deaths, the system can approach an "endemic equilibrium" where the infection stays circulating in the population – but in balance
- The balance is such that (simultaneously)
 - The rate of new infections = The rate of immigration
 - Otherwise # of susceptibles would be changing!
 - The rate of new infections = the rate of recovery
 - Otherwise # of infectives would be changing!

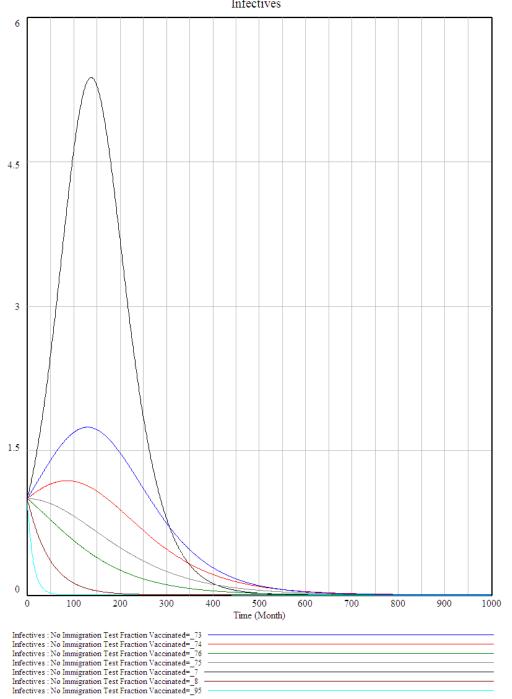
Equilibria

- Disease free
 - No infectives in population
 - Entire population is susceptible
- Endemic
 - Steady-state equilibrium produced by spread of illness
 - Assumption is often that children get exposed when young
- The stability of the these equilibria (whether the system departs from them when perturbed) depends on the parameter values
 - For the disease-free equilibrium on R_0


Adding Vaccination Stock

- Add a
 - "Vaccinated" stock
 - A constant called "Monthly Likelihood of Vaccination"
 - "Vaccination" flow between the "Susceptible" and "Vaccinated" stocks
 - The rate is the stock times the constant above
- Set initial population to be divided between 2 stocks
 - Susceptible
 - Vaccinated
- Incorporate "Vaccinated" in population calculation

Additional Settings


- c= 10
- Beta=.04
- Duration of infection = 10
- Birth & Death Rate=0

Adding Stock

Experiment with Different Initial Vaccinated Fractions

• Fractions = 0.25, 0.50, 0.6, 0.7, 0.8

Recall: Thresholds

- R*
 - Too low # susceptibles => $R^* < 1$: # of infectives declining
 - Too high # susceptibles => $R^* > 1$: # of infectives rising
- Outflow from susceptibles (infections) is determined by the # of Infectives
- Delays:
 - For a while after infectives start declining, they still deplete susceptibles sufficiently for susceptibles to decline
 - For a while after infectives start rising, the # of infections is insufficient for susceptibles to decline

Effective Reproductive Number: R*

- Number of individuals infected by an 'index' infective in the current epidemiological context
- Depends on
 - Contact number
 - Transmission probability
 - Length of time infected
 - # (Fraction) of Susceptibles
- Affects
 - Whether infection spreads
 - If R_{*}> 1, # of cases will rise, If R_{*}<1, # of cases will fall
 - Alternative formulation: Largest real eigenvalue <> 0
 - Endemic Rate

Basic Reproduction Number: R₀

- Number of individuals infected by an 'index' infective in an otherwise disease-free equilibrium
 - This is just R_{*} at disease-free equilibrium all (other) people in the population are susceptible other than the index infective
- Depends on
 - Contact number
 - Transmission probability
 - Length of time infected
- Affects
 - Whether infection spreads
 - If $R_0 > 1$, Epidemic Takes off, If $R_0 < 1$, Epidemic dies out
 - Alternative formulation: Largest real eigenvalue <> 0
 - Initial infection rise $\propto \exp(t^*(R0-1)/D)$
 - Endemic Rate

Recall: A Critical Throttle on Infection Spread: Fraction Susceptible (f)

- The fraction susceptible (here, S/N) is a key quantity limiting the spread of infection in a population
 - Recognizing its importance, we give this name f to the fraction of the population that issusceptible
- If contact patterns & infection duration remain unchanged and, then mean # of individuals infected by an infective over the course of their infection is f*R₀

Recall: Endemic Equilibrium

- Inflow=Outflow \Rightarrow (S/N)·R₀=f·R₀=1
 - Every infective infects a "replacement" infective to keep equilibrium
 - Just enough of the population is susceptible to allow this replacement
- The higher the R₀, the lower the fraction of susceptibles in equilibrium!
 - Generally some susceptibles remain: At some point in epidemic, susceptibles will get so low that can't spread

Critical Immunization Threshold

 Consider an index infective arriving in a "worst case" scenario when noone else in the population is infective or recovered from the illness

- In this case, that infective is most "efficient" in spreading

- The goal of vaccination is keep the fraction susceptible low enough that infection cannot establish itself even in this worst case
 - We do this by administering vaccines that makes a person (often temporarily) immune to infection
- We say that a population whose f is low enough that it is resistant to establishment of infection exhibits "herd immunity"

Critical Immunization Threshold

- Vaccination seeks to lower *f* such that *f**R₀<1
- Worst case: Suppose we have a population that is divided into immunized (vaccinated) and susceptible
 - Let $\ensuremath{\mathsf{q}}_{\ensuremath{\mathsf{c}}}$ be the critical fraction immunized to stop infection
 - $Then f=1-q_c, f^*R_0 < 1 \Longrightarrow (1-q_c)^*R_0 < 1 \Longrightarrow q_c > 1-(1/R_0)$
- So if R₀ = 4 (as in our example), q_c=0.75(i.e. 75% of population must be immunized just as we saw!)